

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Centro Tecnológico, de Ciências Exatas e Educação Departamento de Matemática

Plano de Ensino (Regime Excepcional)

Identificação da disciplina

Código da	Nome da disciplina	Créditos semanais		Carga horária semestral	PCC
disciplina		Teóricos	Práticos	Carga noraria semestrar	100
MAT1301	Cálculo I	04	-	72 h/a	-

Pré-Requisitos

Nome e código da disciplina	MAT1201 – Introdução ao Cálculo (PCC 18h-a)

Identificação da oferta:

Cursos	Turma	Ano/semestre
Licenciatura em Matemática - OBRIGATÓRIA	03756	2021.1

Professor ministrante		E-mail	
	Eleomar Cardoso Júnior	eleomar.junior@ufsc.br	

Objetivos da disciplina

- Identificar, resolver e aplicar as propriedades de limite;
- Identificar e calcular os seguintes tipos de limites: laterais, no infinito, infinitos e fundamentais;
- Lidar algebricamente com limites indeterminados;
- Identificar funções contínuas e aplicar as propriedades de funções contínuas;
- Aplicar o Teorema do Valor Intermediário;
- Interpretar geometricamente a derivada de uma função;
- Utilizar as regras de derivação de funções elementares;
- Identificar a regra da cadeia e obter a derivada de funções compostas;
- Aplicar o conceito de derivada para solucionar problemas relacionados à taxa de variação, velocidade e aceleração;
- Aplicar teoremas sobre máximos e mínimos para resolver problemas de otimização e esboçar gráficos de funções;
- Utilizar a regra de L'Hospital para solucionar limites indeterminados;
- Aplicar o Teorema de Taylor.

Ementa

Limites e continuidade de funções. Extensão do conceito de limite: limites no infinito; limites infinitos, sequências e limite de sequência, limites de função e sequência. O conceito de derivada. Regras de derivação. Aplicações de derivadas: classificação de pontos críticos. Teorema do Valor Médio,

problemas de máximos e mínimos. Formas indeterminadas e a Regra de L'Hôpital. Esboço de gráficos de funções. Polinômio de Taylor e aproximações de funções.

Conteúdo programático

- 1. Limites e Continuidade.
 - Limites: definição e propriedades.
 - Limites laterais.
 - Limites no infinito e limites infinitos. Assíntotas horizontais e verticais.
 - Sequência e limite de sequência. Relações entre limite de função e sequências.
 - Indeterminações.
 - Limites fundamentais.
 - Continuidade: definição e propriedades.
 - Teorema do Valor Intermediário e de Weierstrass.
- 2. Derivada.
 - Definição. Interpretação geométrica.
 - Derivadas laterais.
 - Regras de derivação: Derivada de função composta (regra da cadeia). Derivada da função inversa. Derivada de funções elementares. Derivada de g(x)^f(x). Derivadas de ordem superior. Derivação implícita.
- 3. Aplicações de Derivadas.
 - Taxa de variação, velocidade e aceleração.
 - Teorema do Valor Médio.
 - Análise do comportamento de funções: extremos de uma função, funções crescentes e decrescentes. Critérios para determinar os extremos de uma função. Concavidade e ponto de inflexão. Esboço de gráficos.
 - Problemas de otimização.
 - Regra de L'Hôpital.
- 4. Fórmulas de Taylor
 - Polinômio de Taylor de ordem n.
 - Aproximação local de função diferenciável usando polinômios de Taylor.

Metodologia

A disciplina será baseada no estudo do livro **Cálculo I**, desenvolvido pelos professores Carmem Comitre Gimenez e Rubens Starke. Tal livro é utilizado como bibliografia para a disciplina homônima de Cálculo I do curso de Licenciatura em Matemática da UFSC, modalidade EaD. A obra é fundamentada em algumas das referências básicas e complementares da disciplina **MAT1301** – **Cálculo I** – em conformidade com o PPC do curso. O livro encontra-se disponível on-line no link https://mtmgrad.paginas.ufsc.br/files/2014/04/C%C3%A1lculo-I.pdf, acessado em 11/04/2021.

Semanalmente, às segundas-feiras pela manhã, o professor disponibilizará vídeos explicativos (com aproximadamente uma hora de vídeos por semana) e textos na plataforma Moodle. Tal material estará

vinculado ao objeto de estudo de cada semana.

Listas de Exercícios individuais e direcionadas para entrega também serão disponibilizadas semanalmente (às segundas-feiras pela manhã) na mesma plataforma. O estudante poderá entregar as listas semanais resolvidas (via reprodução digital por foto) até as 23:55 h das sextas-feiras da semana de liberação do material – via e-mail institucional ou plataforma Moodle. A entrega das listas – além de usada no processo de avaliação – será uma ferramenta para aferição de presença. Outros exercícios poderão ser propostos aos estudantes em listas complementares (para fixação) e não serão solicitados para efeito de presença ou avaliação.

Em geral, nas quartas-feiras, das 08h20min às 09h10min, o professor estará on-line para esclarecimento de dúvidas na Plataforma Google Meet ou na Plataforma Zoom (exceto, eventualmente, nas semanas de provas ou eventuais feriados – em que o horário para atendimento poderá ser alterado). Tais atendimentos estão configurados como atividades síncronas referentes à disciplina.

Critérios de Avaliação

- _ Serão solicitadas 15 listas de exercícios individuais e direcionadas, que serão disponibilizadas semanalmente (às segundas-feiras pela manhã) para entrega até as 23:55 h da sexta-feira da semana referente à liberação. Tais listas serão curtas, com aproximadamente 2 ou 3 exercícios. E devem ser entregues ao professor via reprodução digital por foto. Cada lista será avaliada numa escala de 0,0 a 10,0 e a média aritmética das notas das listas de exercícios gerará a nota L.
- _ Serão aplicadas 3 provas ao longo do semestre. O professor pretende que as provas sejam escritas versando a resolução de exercícios selecionados. As provas serão disponibilizadas de forma individual e direcionada às terças-feiras da semana em que as avaliações estiverem planejadas e o estudante deverá entregá-las resolvidas via reprodução digital por foto (no mesmo esquema da entrega das listas) até as 23:55 h da sexta-feira da semana referente a sua liberação. Cada prova será avaliada numa escala de 0,0 a 10,0 e a média aritmética das notas das provas gerará a nota P.
- _ Independentemente da aplicação da prova numa determinada semana, haverá normalmente a solicitação da resolução de uma lista de exercícios.

A nota M será obtida pela seguinte média ponderada

$$M=(3*L+7*P)/10$$
.

- _ Se M for maior ou igual a 6,0, o estudante estará aprovado e M será a sua média semestral.
- _ Se M for maior ou igual a 3,0 e menor ou igual a 5,5, o estudante não estará aprovado, mas, terá direito a fazer uma prova de recuperação versando sobre todos os assuntos abordados na disciplina.
- _ Se M for menor do que 3,0, esta será a média semestral e o estudante será considerado reprovado.
- _ Em todas as situações, a aprovação do estudante estará condicionada a presença em pelo menos 75% das aulas (o que corresponde à entrega de, pelo menos, 12 das listas de exercícios semanais). Estudantes com presença inferior a 75% serão reprovados e sua nota semestral será 0,0.

Recuperação

O estudante com frequência suficiente e média M entre 3,0 e 5,5 terá direito a uma prova de recuperação R, abordando todo o conteúdo programático. A média final da disciplina será a média aritmética entre M e R, i.e.,

$$MF = (M + R) / 2.$$

O estudante estará aprovado se MF for maior ou igual a 6,0.

O formato da prova de recuperação será uma prova escrita, a ser disponibilizada na plataforma Moodle.

Matriz Instrucional

Mauriz Ilist	delonar			Atividades e	
Semana	Carga Horária	Conteúdo	Recursos didáticos	estratégias de interação (síncrona/as- síncrona)	Avaliação e frequência
Semana 1 – de 14/06 a 18/06	4,5 horas- aula	Sequências infinitas, Subsequências, Sequências limitadas e Sequências monótonas.	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Aulas assíncronas e atendimento síncrono	Lista de Exercícios para entregar – que serve para avaliação e aferição de frequência
Semana 2 – de 21/06 a 25/06	4,5 horas- aula	Limite de uma sequência e propriedades do limite.	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Aulas assíncronas e atendimento síncrono	Lista de Exercícios para entregar – que serve para avaliação e aferição de frequência
Semana 3 – de 28/06 a 02/07	4,5 horas- aula	Limites de sequências: limites infinitos; Indeterminação.	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Aulas assíncronas e atendimento síncrono	Lista de Exercícios para entregar – que serve para avaliação e aferição de frequência
Semana 4 – de 05/07 a 09/07	4,5 horas- aula	Limite de uma função: conceito de limite e definição formal. Caracterização do limite de funções via limite de sequências.	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Aulas assíncronas e atendimento síncrono	Lista de Exercícios para entregar – que serve para avaliação e aferição de frequência
Semana 5 – de 12/07 a 16/07	4,5 horas- aula	Limite de uma função: Propriedades do limite e indeterminação. Limites Laterais de Funções.	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Aulas assíncronas e atendimento síncrono	Lista de Exercícios para entregar – que serve para avaliação e aferição de frequência
Semana 6 – de 19/07 a 23/07	4,5 horas- aula	Limites infinitos e Limites no Infinito. Assíntotas. Limites Fundamentais.	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Aulas assíncronas e atendimento síncrono	Lista de Exercícios para entregar – que serve para avaliação e aferição de frequência.
Semana 7 – de 26/07 a 30/07	4,5 horas- aula	Funções Contínuas. Teorema de Weierstrass sobre Máximos e Mínimos de funções contínuas.	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Aulas assíncronas e atendimento síncrono	Lista de Exercícios para entregar – que serve para avaliação e aferição de frequência. Prova 1 (sobre os assuntos trabalhados da Semana 1 à Semana 6)
Semana 8 – de 02/08 a 06/08	4,5 horas- aula	Derivadas: definição e interpretação geométrica. Derivadas e Continuidade.	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Aulas assíncronas e atendimento síncrono	Lista de Exercícios para entregar – que serve para avaliação e aferição de frequência.
Semana 9 - de 09/08 a 13/08	4,5 horas- aula	Regras de Derivação: operações. Derivadas de Funções elementares.	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Aulas assíncronas e atendimento síncrono	Lista de Exercícios para entregar – que serve para avaliação e aferição de frequência.

Semana 10 - de 16/08 a 20/08	4,5 horas- aula	Derivada da Função Composta (regra da cadeia). Derivada da função inversa.	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Aulas assíncronas e atendimento síncrono	Lista de Exercícios para entregar – que serve para avaliação e aferição de frequência.
Semana 11 – de 23/08 a 27/08	4,5 horas- aula	Derivada de função implícita. Derivadas de Ordem Superior. Regra de L'Hospital.	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Aulas assíncronas e atendimento síncrono	Lista de Exercícios para entregar – que serve para avaliação e aferição de frequência. Prova 2 (sobre os assuntos trabalhados da Semana 7 a Semana 10)
Semana 12 – de 30/08 a 03/09	4,5 horas- aula	Aplicação de Derivadas: Taxas de Variação, Velocidade e Aceleração. Teorema do Valor Médio. Funções Crescentes e Decrescentes.	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Aulas assíncronas e atendimento síncrono	Lista de Exercícios para entregar – que serve para avaliação e aferição de frequência.
Semana 13 - de 06/09 a 10/09	4,5 horas- aula	Pontos de Máximo e Mínimo. Pontos críticos e critérios para identificação de pontos extremos. Problemas de otimização.	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Aulas assíncronas e atendimento síncrono	Lista de Exercícios para entregar – que serve para avaliação e aferição de frequência.
Semana 14 - de 13/09 a 17/09	4,5 horas- aula	Concavidade e pontos de inflexão. Esboço de gráficos de funções.	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Aulas assíncronas e atendimento síncrono	Lista de Exercícios para entregar – que serve para avaliação e aferição de frequência.
Semana 15 - de 20/09 a 24/09	4,5 horas- aula	Fórmula de Taylor e aproximação de funções.	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Aulas assíncronas e atendimento síncrono	Lista de Exercícios para entregar – que serve para avaliação e aferição de frequência. Prova 3 (sobre os assuntos trabalhados da Semana 11 a Semana 14)
Semana 16 – de 27/09 a 01/10	4,5 horas- aula	Revisão para a Recuperação	Videoaulas, textos para leitura (livro) e atendimentos ao vivo	Atendimento síncrono	Prova de Recuperação.

Obs.: Caso seja preciso, algumas alterações poderão ser feitas nesta matriz ao longo do semestre e em concordância com os estudantes matriculados na disciplina.

Bibliografia - em caráter excepcional

Principal

1. GIMENEZ, C. S. C.; STARKE, R. **Cálculo I.** 2 ed. Florianópolis: UFSC/EAD/CED/CFM, 2011. Disponível on-line no link https://mtmgrad.paginas.ufsc.br/files/2014/04/C%C3%A1lculo-I.pdf, acessado em 11 de abril de 2021.

Complementar

- **1.** ANTON, Howard; BIVENS, Irl; DAVIS, Stephen. **Cálculo**: volume 1. 10. ed. Porto Alegre: Bookman, 2014.
- 2. ÁVILA, Geraldo. Cálculo. 7. ed., Rio de Janeiro: LTC, 2006.
- **3.** BOULOS, Paulo; ABUD, Zara Issa. **Cálculo diferencial e integral.** v. 1, São Paulo: Makron Books, 1999.
- **4.** FLEMMING, Diva Marília; GONÇALVES, Mirian Buss. **Cálculo A**: funções, limite, derivação e integração. 6. ed. rev. e ampl. São Paulo: Pearson Prentice Hall, 2007.
- 5. GUIDORIZZI, Hamilton L. Um curso de cálculo: volume 1. 5. ed. Rio de Janeiro: LTC, 2001.
- **6.** IEZZI, Gelson; MURAKAMI, Carlos; MACHADO, Nilson J. **Fundamentos de matemática elementar**, v. 8: limites, derivadas, noções de integral. 7. ed. São Paulo: Atual, 2013.
- 7. LIMA, Elon Lages. Análise real. 10. ed. Rio de Janeiro: Instituto de Matemática Pura e Aplicada, 2009.
- **8.** SIMMONS, George Finlay. **Cálculo com geometria analítica**. São Paulo: Pearson Makron Books, c1987-c1988.
- **9.** STEWART, James. **Cálculo**: volume 1, tradução da 8ª edição norte-americana. São Paulo: Cengage Learning, 2016.