

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Campus Blumenau Departamento de Matemática

Plano de Ensino

Identificação da disciplina

Código da disciplina	Nome da disciplina	Créditos semanais		Carga horária semestral	PCC
		Teóricos	Práticos	Carga noraria semestrar	TCC
MAT1601	Cálculo IV	04	-	72 horas/aula	-

Pré-Requisitos

Nome e código da disciplina	MAT1501 – Cálculo III
I Notific C courgo da discipilità	WIATION - Calculo III

Identificação da oferta

Cursos	Turma	Ano/semestre
Licenciatura em Matemática (Noturno)	06751	2023.1

Professores ministrantes	E-mail
Louise Reips	l.reips@ufsc.br

Horário

4.20:20-2 / 6.18:30-2

Ementa

Integrais múltiplas. Integrais de linha. Teorema de Green. Integrais de superfície. Teorema de Gauss. Teorema de Stokes

Objetivos da disciplina

Oferecer condições para o desenvolvimento das seguintes competências:

- Compreender e esboçar gráficos com os sistemas de coordenadas cartesianas, cilíndricas e esféricas;
- Calcular integrais duplas e triplas em coordenadas cartesianas;
- Calcular integrais triplas em coordenadas cilíndricas e esféricas;
- Aplicar as noções relacionadas às integrais múltiplas;
- Compreender as noções relacionadas ao teorema de mudança de variáveis em integração múltipla;
- Compreender as noções relacionadas aos conceitos de campos escalares e vetoriais, divergente e rotacional;
- Calcular integrais de linha de campos escalares e vetoriais;
- Compreender as noções relacionadas ao Teorema de Green;
- Compreender as noções relacionadas aos campos conservativos;
- Calcular integrais de superficie;
- Compreender as noções de fluxo de um campo vetorial;
- Compreender as noções relacionadas ao Teorema de Gauss (ou da divergência);
- Compreender as noções relacionadas ao Teorema de Stokes.

Conteúdo programático

1 Integração múltipla

- 1.1 Coordenadas cartesianas, cilíndricas e esféricas
- 1.2 Cálculo e aplicações das integrais duplas e triplas.
- 1.3 Teorema de Fubini
- 1.4 Integrais triplas em coordenadas cilíndricas e esféricas
- 1.5 Teorema de mudança de variáveis em integração múltipla.

2 Cálculo vetorial

- 2.1 Campos escalares e vetoriais
- 2.2 Derivadas de campos vetoriais.
- 2.3 Divergente e rotacional

3 Integral de linha

- 3.1 Integral de linha de campos escalares e vetoriais.
- 3.2 Teorema de Green
- 3.3 Campos conservativos: função potencial, independência de caminhos

4 Integrais de superfícies

- 4.1 Superficies
- 4.2 Área e integrais de superfície
- 4.3 Fluxo de um campo vetorial.
- 4.4 Teorema de Gauss (ou da divergência)
- 4.5 Teorema de Stokes

Metodologia

Procedimentos: Aulas expositivas e dialogadas. Listas de exercícios. Horário semanal de atendimento aos estudantes. Provas de avaliação conceitual.

Avaliação

- Teremos 03 avaliações, A1, A2 e A3, de modo que a nota do estudante será dada através da média aritmética dessas notas.
- Se a frequência for suficiente (75%),
 - O aluno estará aprovado se M for maior ou igual a 6,0.
 - o O aluno estará reprovado se M for menor que 3,0.
 - Se M estiver entre 3,0 e 5,5, o mesmo terá direito a uma prova de recuperação.
 - A prova de recuperação acontecerá na última semana de aula que renderá uma nota R (ausência nesta prova significa R = 0) tal que a Média Final do estudante será:

$$MF = (M + R)/2.$$

• O aluno estará aprovado se MF for maior ou igual a 6,0.

Cronograma

- 06/03 até 28/04: Unidade 1 (tópicos 1.1, 1.2 e 1.3). Avaliação 1.
- 03/05 até 24/05: Unidades 1, 2 e 3 (tópicos 1.4 até 3.1). Avaliação 2.
- 29/05 até 30/06: Unidades 3 e 4 (tópicos 3.2 até 4.5). Avaliação 3.
- REC: Última semana de aula.

Obs: Datas das provas sujeitas à alteração.

Obs. 2: O estudante que não realizar alguma avaliação, terá 3 dias úteis após o encerramento dessa para justificar seus motivos e ter direito a uma segunda chamada, conforme o Art. 74 da Resolução nº 017/CUn/97.

Bibliografia

Básica.

- **1.** ANTON, Howard; BIVENS, Irl; DAVIS, Stephen. Cálculo. 10. ed., V. 2, Porto Alegre: Bookman, 2014.
- 2. GUIDORIZZI, Hamilton L. Um curso de cálculo. 5. ed., v. 3 Rio de Janeiro: LTC, 2001.
- 3. STEWART, James. Cálculo. 7ed., v. 2, São Paulo: Cengage Learning, c2014

Complementar

- 1. BOULOS, Paulo; ABUD, Zara Issa. Cálculo diferencial e integral. v. 2, São Paulo: Makron Books, 1999.
- **2.** GONÇALVES, Mirian Buss; FLEMMING, Diva Marília. Cálculo B: funções de várias variáveis, integrais múltiplas, integrais curvilíneas e de superfície. 2. ed. rev. e ampl. São Paulo: Pearson Prentice Hall, 2007.
- 3. LEITHOLD, Louis. O cálculo com geometria analítica. 3. ed., v. 2, São Paulo: Harbra, c1994.
- 4. LIMA, Elon Lages. Curso de análise. 13. ed. Rio de Janeiro: IMPA, 1999.
- **5.** SIMMONS, George Finlay. Cálculo com geometria analítica. São Paulo: Pearson Makron Books, c1987-c1988.