

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Campus Blumenau Departamento de Matemática

Plano de Ensino

Identificação da disciplina

Código da disciplina	Nome da disciplina	Créditos semanais		Carga horária semestral	PCC
		Teóricos	Práticos	Carga norarra semestrar	rcc
MAT1331	Geometria Analítica	06	-	108 h/a	18

Pré-Requisitos

Nome e código da disciplina

Identificação da oferta

Cursos	Turma	Ano/semestre
Licenciatura em Matemática (Noturno)	03751	2023.2

Professores ministrantes	E-mail
Louise Reips	1.reips@ufsc.br

Horário

3.18:30-2 / 5.18:30-2 / 6.20:20-2

Ementa

Álgebra matricial. Sistemas de equações lineares. Determinantes. Vetores e geometria no espaço. Retas e planos. Seções cônicas: parábola, elipse, hipérbole. Superfícies quádricas e curvas no espaço.

Objetivos da disciplina

Oferecer condições para o desenvolvimento das seguintes competências aos alunos:

- Identificar geometricamente equações lineares e quadráticas em até 3 variáveis e representá-las graficamente;
- Operar com vetores, calcular os produtos escalar, vetorial e misto, bem como utilizar suas interpretações geométricas;
- Aplicar as noções de vetores para resolver problemas com retas e planos;
- Resolver algebricamente e interpretar geometricamente o conjunto solução de um sistema linear de até 3 variáveis.

Conteúdo programático

1 Álgebra Matricial

Adição, multiplicação por escalar, matriz nula e matriz inversa. Produto de matrizes, matriz transposta, matriz simétrica. Determinante de uma matriz.

2 Sistemas de equações lineares

Escalonamento de matrizes. Solução de sistemas lineares de 2 ou 3 variáveis.

3 Vetores no plano e no espaço

Segmentos orientados. Definição e operações com vetores. Dependência linear. Bases e coordenadas de um vetor em relação a uma base. Norma de vetor. Produto escalar. Ângulo entre vetores. Orientação no espaço. Produto vetorial. Produto misto

4 Retas e planos no espaço

Equações da reta. Ângulo entre retas. Equações do plano. Ângulo entre dois planos. Distância de ponto a reta. Distância de ponto a plano. Distância entre duas retas reversas. Distância entre dois planos. Interpretação geométrica de sistemas de equações lineares.

5 Curvas Quadráticas - Cônicas

Definição e dedução da equação de elipse, parábola e hipérbole. Estudo de propriedades de cônicas

6 Superfícies Quadráticas no espaço

Definição de superfícies quádricas. Esfera, elipsóide, hiperbolóide (de uma ou duas folhas), parabolóides (elíptico ou hiperbólico), cilindros e cones. Seções cônicas.

Metodologia

Procedimentos: Aulas expositivas e dialogadas. Listas de exercícios. Horário semanal de atendimento aos estudantes. Provas de avaliação conceitual.

Avaliação

- Teremos 03 avaliações, A1, A2 e A3, de modo que a nota do estudante será dada através da média aritmética dessas notas.
- Se a frequência for suficiente (75%),
 - o O aluno estará aprovado se M for maior ou igual a 6,0.
 - O aluno estará reprovado se M for menor que 3,0.
 - Se M estiver entre 3,0 e 5,5, o mesmo terá direito a uma prova de recuperação.
 - A prova de recuperação acontecerá na última semana de aula que renderá uma nota R (ausência nesta prova significa R = 0) tal que a Média Final do estudante será:

$$MF = (M + R)/2.$$

• O aluno estará aprovado se MF for maior ou igual a 6,0.

Cronograma

- Agosto e setembro: Unidades 1 e 2. Avaliação 1.
- Outubro: Unidade 3. Avaliação 2.
- Novembro e dezembro: Unidades 4, 5 e 6. Avaliação 3.
- REC: Última semana de aula.

Obs: Datas das provas sujeitas à alteração.

Obs. 2: O estudante que não realizar alguma avaliação, terá 3 dias úteis após o encerramento dessa para justificar seus motivos e ter direito a uma segunda chamada, conforme o Art. 74 da Resolução nº 017/CUn/97.

Bibliografia

Básica.

- **1.** ANTON, Howard; RORRES, Chris. Álgebra linear com aplicações. 10. ed. Porto Alegre: Bookman Editora, 2000.
- 2. STEINBRUCH, Alfredo; WINTERLE, Paulo. Álgebra linear. Rio de Janeiro: Makron Books, 1987.
- **3.** STEINBRUCH, Alfredo; WINTERLE, Paulo. Geometria analítica. 2. ed..São Paulo: Pearson Makron Books, 1987

Complementar

- 1. BOLDRINI José Luiz, et al. Álgebra linear. 3. ed. São Paulo: Editora Harbra, 1984.
- 2. BOULOS, Paulo; CAMARGO Ivan de. Geometria analítica. 3 ed. São Paulo: Prentice Hall, 1987.
- **3.** CALLIOLI, Carlos A,et al. Álgebra linear e aplicações. São Paulo: Ed. Atual. 1990.
- 4. LIMA Elon Lages. Coordenadas no plano. 6. ed. Rio de Janeiro: SBM, 2013.5.
- 5. SANTOS, Nathan Moreira dos. Vetores e matrizes. 3. ed. São Paulo: Thomson Learning, 2007.