

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Centro Tecnológico, de Ciências Exatas e Educação Departamento de Matemática

Plano de Ensino

Identificação da disciplina

Código da	Nome da disciplina	Carga horária semanal		Cargo harária camactral
disciplina		Teórica	PCC	- Carga horária semestral
MAT4331	Probabilidade e Estatística	03 h/a	01 h/a	72 h/a

Pré-Requisitos

I	Nome e código da disciplina	MAT4231 - Análise Combinatória		

Identificação da oferta

Cursos	Turma	Ano/semestre
Licenciatura em Matemática (Noturno)	751	2024.2

Professor ministrante	E-mail
Javier Esneider Méndez Alfonso	javier.mendez@ufsc.br

Objetivos da disciplina

- Entender o conceito de Variável Aleatória e probabilidade.
- Analisar e interpretar dados.
- Entender a correlação de dados e saber aplicar o conceito de regressão.

Ementa

Introdução à Teoria da Probabilidade: espaço amostral, adição e multiplicação de probabilidades. Análise Exploratória de Dados. Amostragem. Estimação de parâmetros. Correlação e regressão.

Conteúdo programático

1. Probabilidade

- Espaço amostral, eventos e probabilidade de Laplace
- Espaço de probabilidade
- Adição de probabilidades
- Probabilidade condicional e independência
- A distribuição binomial

2. Análise exploratória de dados

- A coleta dos dados
- Arquivos de dados
- Distribuição de frequências
- Apresentação em tabelas e gráficos
- Medidas de posição de uma distribuição de frequências
- Medidas de dispersão
- Quartis e diagrama em caixas
- Relatórios com tabelas, gráficos e medidas descritivas
- Aplicações com auxílio do computador

3. Técnicas de amostragem

- Conceito de população, amostra e amostragem
- Amostragem aleatória simples
- Amostragem estratificada
- Amostragem por conglomerados
- Amostragem não-probabilística
- Aplicações

4. Estimação de parâmetros

- Conceito de parâmetro e estatística
- A distribuição da média amostral
- A distribuição da proporção amostral
- Intervalo de confiança para uma proporção
- Intervalo de confiança para uma média
- Discussão sobre tamanho de amostra
- Aplicações

5. Correlação e regressão

- Diagramas de dispersão
- Coeficiente de correlação de Pearson
- Ajuste de uma reta por mínimos quadrados
- Variação explicada e não-explicada
- Aplicações

Metodologia

Procedimentos: Aulas expositivas e dialogadas. Listas de exercícios. Aulas teórico-práticas com uso de software computacional, se possível.

Recursos: Régua, canetas, apagador, quadro branco e recursos multimídia.

Listas, recados e material complementar serão disponibilizados no **Moodle** da disciplina. Se possível, será feito o uso de recursos de informática, como planilhas eletrônicas e pacotes/softwares computacionais de Estatística.

PCC – Prática como Componente Curricular

No percurso da disciplina será incentivada a realização de uma sequência didática baseada no eixo "O ensino da Probabilidade e Estatística na escola".

Critérios de Avaliação

Ao longo do semestre, serão aplicadas três provas escritas ponderadas em uma escala de 0 a 10,0: P1, P2 e P3. Ademais, será considerada uma atividade relativa ao PCC ponderada também em uma escala de 0 a 10,0: PCC.

A média M será obtida por

M=(P1+P2+P3+PCC)/4.

- Se M for maior ou igual a 6,0, o(a) estudante estará aprovado(a) e M será a sua média semestral.
- Se M for maior ou igual a 3,0 e menor ou igual a 5,5, o(a) estudante não estará aprovado(a), mas, terá direito a fazer uma prova de recuperação versando sobre todos os assuntos abordados na disciplina.
- Se M for menor do que 3,0, esta será a média semestral e o(a) estudante será considerado reprovado(a).
- Em todas as situações, a aprovação do(a) estudante estará condicionada à presença em pelo menos 75% das aulas. Estudantes com presença inferior a 75% serão reprovados(as) e sua nota semestral será de 0,0.

Recuperação

O(a) estudante com frequência suficiente e média M entre 3,0 e 5,5 terá direito a uma prova de recuperação R, abordando todo o conteúdo programático. A média final da disciplina será a média aritmética entre M e R, i.e.,

$$MF = (M + R) / 2.$$

O(a) estudante estará aprovado se MF for maior ou igual a 6,0.

Cronograma

- Parte I: de 26/08/2024 a 02/10/2024:
 - 1. Probabilidade
 - 2. Análise exploratória de dados.
- Parte II: de 04/10/2024 a 06/11/2024:
 - 3. Técnicas de amostragem
 - 4. Estimação de parâmetros.
- Parte III: de 08/11/2024 a 06/12/2024:
 - 5. Correlação e regressão.
- Parte IV: de 11/12/2024 a 13/12/2024:

PCC.

- Datas importantes:

02/10/2024 - Prova 1.

06/11/2024 - Prova 2.

06/12/2024 - Prova 3.

11/12/2024 e 13/12/2024 – Apresentação das atividades do PCC.

18/12/2024 – Provas de segundas chamadas.

20/12/2024 – Prova de Recuperação.

Com o intuito de completar a carga horária da disciplina, haverá atendimento presencial (uma hora por semana) para tirar dúvidas e reforçar os conteúdos vistos em aula que deverá ser agendado com pelo menos dois dias de antecedência via email javier.mendez@ufsc.br, a sala será fixada logo no início do semestre. Além disso, serão propostas listas de exercícios (disponibilizadas no moodle) e serão recomendadas algumas atividades práticas com software (para realizar em casa), assim como a participação em seminários (extraclasse) que abordarão e alcançarão todo o conteúdo programático da disciplina.

OBS 1: O cronograma acima está sujeito a alterações, visando melhorar o desenvolvimento das atividades propostas. Será avisado pelo moodle com antecedência.

OBS 2: O(a) estudante que não realizar alguma avaliação, terá 3 dias úteis após o encerramento desta para justificar seus motivos e ter direito a uma segunda chamada, conforme o Art. 74 da Resolução nº 017/CUn/97

Bibliografia

Básica

- 1. LOESCH, Cláudio. Probabilidade e estatística. 1. ed., Rio de Janeiro: LTC, 2015.
- 2. ROSS, S. Probabilidade: Um curso moderno com aplicações. 8. ed., São Paulo: Pearson, 2010.
- 3. SPIEGEL, Murray R. Estatística. 4. ed., Porto Alegre: Bookman, 2009. (Coleção Schaum).

Complementar

- 1. BUSSON, W. O., MORETTIN, P. A. Estatística Básica. 5. ed., São Paulo: Editora Saraiva, 2004.
- 2. COSTA NETO, P. L. de O. Estatística. 5. ed., São Paulo: Edgard Blucher, 2002.
- **3.** HAZZAN, Samuel. Fundamentos de matemática elementar: Combinatória e probabilidade. 8. ed., v. 5., São Paulo: Atual, 2013.
- 4. KOKOSKA, Stephen. Introdução à estatística. 1. ed., Rio de Janeiro: LTC, 2013.
- 5. MEYER, Paul L. Probabilidade, 2. ed., Rio de Janeiro: LTC, 2015.
- 6. TIBONI, Conceição Gentil Rebelo. Estatística básica. 1. ed., São Paulo: Atlas, 2010.
- 7. TRIOLA, Mário F. Introdução à estatística. 11. ed., Rio de Janeiro: LTC, 2015.