

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Centro Tecnológico, de Ciências Exatas e Educação Departamento de Matemática

Plano de Ensino

Identificação da Disciplina

		Carga horária semanal (h/a)		nal (h/a)	
Código	Nome	Teórica	PCC	Extensão	Carga horária total (h/a)
MAT2111	Geometria Analítica	4			72

Pré Requisitos

Nome e código da disciplina	
rionie e coalgo da discipilita	

Identificação da oferta

Cursos	Turma	Ano/Semestre	Horário/Sala
754 – ENGENHARIA DE CONTROLE E AUTOMAÇÃO	01754	2025.1	2.1010-2/A101 e 4.1010-2/A101

Professor

Professor	E-mail	Horário de atendimento/Sala
Darlyn Vargas	darlyn.vargas@ufsc.br	2 ^a -4 ^a feiras das 14:00 às 15:00 hrs/SN-B118

Objetivos da disciplina

Oferecer condições para o desenvolvimento das seguintes competências:

- · Operar com matrizes, calcular a inversa de uma matriz, discutir e resolver sistemas lineares por escalonamento.
- Operar com vetores, calcular os produtos escalar, vetorial e misto, bem como utilizar suas interpretações geométricas.
- Aplicar as noções de matrizes e vetores para resolver problemas com retas e planos.
- Identificar uma curva plana, reconhecer seus elementos e representá-la graficamente.

Ementa

Matrizes. Determinantes. Sistemas lineares. Álgebra vetorial. Estudo da reta e do plano. Curvas planas. Superfícies.

Conteúdo programático

1. Matrizes

- Matriz. Definição, notação, igualdade, tipos.
- Operações com matrizes: adição, multiplicação por escalar, multiplicação de matrizes.
- Matriz na forma escalonada, posto de uma matriz na forma escalonada.
- Operações elementares por linhas, posto de uma matriz.
- Determinantes: propriedades e cálculo por escalonamento.
- Matriz inversa.
- Determinação da matriz inversa pelo processo de Jordan.
- Classificação e resolução de sistemas lineares por escalonamento.

2. Álgebra vetorial

- · Vetores, definição.
- Operações com vetores.
- Adição, representação geométrica e propriedades.
- Multiplicação por um escalar, representação geométrica e propriedades.
- Subtração e representação geométrica.
- Combinação linear de vetores, dependência linear de vetores.
- Produto escalar, propriedades e interpretação geométrica.
- Norma de um vetor.
- Ângulo entre vetores, paralelismo e ortogonalidade de vetores.
- Produto vetorial, propriedades e interpretação geométrica.
- Produto misto, propriedades e interpretação geométrica.

3. Estudo da reta e do plano no espaço

- Sistemas de coordenadas cartesianos.
- Equação vetorial da reta.
- Equações paramétricas da reta.
- Equações simétricas da reta.
- Condição de paralelismo entre retas.
- Condição de ortogonalidade entre retas.
- Condição de coplanaridade entre retas.
- Ângulo entre duas retas.
- Intersecção de duas retas.
- Equação vetorial do plano.
- Equações paramétricas do plano.
- Equação geral do plano.
- Vetor normal a um plano.
- Condição de paralelismo entre dois planos.
- Condição de ortogonalidade entre dois planos.
- Intersecção de planos.
- Ângulo entre planos.
- Ângulo entre reta e plano.
- Condição de paralelismo entre reta e plano.
- Condição de ortogonalidade entre reta e plano.
- Intersecção de reta e plano.
- Distâncias entre dois pontos, de um ponto a uma reta, entre duas retas, de um ponto a um plano, entre dois planos, de uma reta a um plano.

4. Cônicas

- Circunferência.
- · Parábola.
- Elipse.
- Hipérbole.
- Superfícies quádricas.
- Superfície: definição.
- Esfera.
- Elipsoide.
- Hiperboloide de uma e duas folhas.
- Paraboloide elíptico e hiperbólico.
- Superfície cônica.
- Superfícies cilíndricas.

Cronograma de atividades

Semana	Conteúdos/Atividades
1	Matriz. Definição, notação, igualdade, tipos Operações com matrizes: adição, multiplicação por escalar, multiplicação de matrizes.
2	Matriz na forma escalonada, posto de uma matriz na forma escalonada Operações elementares por linhas, posto de uma matriz Quest.1
3	Determinantes: propriedades e cálculo por escalonamento Matriz inversa.
4	Determinação da matriz inversa pelo processo de Jordan Classificação e resolução de sistemas lineares por escalonamento Quest.2
5	Vetores, definição – Operações com vetores: adição, multiplicação por um escalar, representações geométricas e propriedades – Combinação linear de vetores, dependência linear de vetores.
6	Produto escalar, propriedades e interpretação geométrica – Norma de um vetor - Ângulo entre vetores, paralelismo e ortogonalidade de vetores. – Quest.3
7	Produto vetorial e misto, propriedades e interpretação geométrica Prova 1
8	Equação vetorial, paramétricas, simétricas da reta – Condição de paralelismo, ortogonalidade e coplanaridade entre retas – Ângulo e Intersecção de duas retas.
9	Equação vetorial, paramétricas e geral do plano – Vetor normal a um plano - Condição de paralelismo e ortogonalidade entre dois planos. – Quest.4
10	Ângulo e intersecção entre dois planos – Ângulo e interseção entre reta e plano.
11	Condição de paralelismo e ortogonalidade entre reta e plano. – Quest.5
12	Distâncias entre dois pontos, de um ponto a uma reta, entre duas retas, de um ponto a um plano, entre dois planos, de uma reta a um plano – Prova 2
13	Cônicas: Circunferência, Parábola, Elipse e Hipérbole.
14	Superfícies quádricas. – Superfície: definição.
15	Esfera, Elipsoide, Hiperboloide de uma e duas folhas. – Quest.6
16	Paraboloide elíptico e hiperbólico. – Superfície cônica.
17	Superfícies cilíndricas – Prova 3
18	Prova de Recuperação

Avaliação

Por meio de **03 provas escritas** de cinco questões, com nota de 0 à 10, presencial aos sábados y duração de duas horas; **03 listas de exercícios** com conteúdos univocamente correspondente a cada prova escrita, com nota de 0 à 10 y cuja resolução deverá ser entregue ao professor, no máximo, até o dia de cada prova escrita; **06 questionários** com apenas duas questões, com nota de 0 à 10, aplicadas nos vinte minutos finais da última aula da semana, tais questionários tem duas finalidades: primeiro é fixar os conteúdos prévios a cada prova escrita e segundo estimular a rapidez de raciocínio. Finalmente o professor considerará **participações em sala de aula** como respostas a perguntas que venham surgir no transcurso da exposição do tópico na aula em exercício.

- Provas escritas: P₁ de 17%, P₂ de 18% e P₃ de 20%.
- Listas de exercícios: L_i (i=1,2,3) de 5% cada.

- Questionários: Q_i (i=1,...,6) de 2,5% cada.
- Participação em sala de aula: J_i (i=1,2,3) de 5%, no máximo, nos tópicos de cada prova.

A média M será calculada na forma: $M=[(17*P_1+18*P_2+20*P_3)+5*\Sigma_iL_i+2,5*\Sigma_iQ_i+5*\Sigma_iJ_i]/100$. Se a frequência for suficiente (>75%):

- O aluno estará aprovado se $M \ge 6.0$ e estará reprovado se $M \le 3.0$.
- Se M estiver entre 3,0 e 5,5, o aluno terá direito a uma prova de recuperação, se a frequência é suficiente.

A prova de recuperação renderá uma nota R e a Média Final do estudante será:

$$MF = (M + R)/2.$$

Finalmente, o aluno estará aprovado se MF for maior ou igual a 6,0.

Bibliografia

Básica

- [1] BOULOS, Paulo; de CAMARGO, Ivan. **Geometria analítica**: um tratamento vetorial. 3. ed., São Paulo: Pearson, 2005.
- [2] KUHLKAMP, Nilo. **Matrizes e sistemas de equações lineares**. 4. ed., Florianópolis: Editora da UFSC, 2015
- [3] STEINBRUCH, Alfredo; WINTERLE, Paulo. **Geometria analítica**. 2. ed., São Paulo: Pearson, Makron Books, 1987.

Complementar

- [1] ANTON, Howard; RORRES, Chris. Álgebra linear: com aplicações. Porto Alegre: Bookman, 2012.
- [2] IEZZI, Gelson. **Fundamentos de matemática elementar**: geometria analítica. v. 7, São Paulo: Atual, 2013.
- [3] LEITHOLD, Louis. **O cálculo com geometria analítica**. 3. ed., v. 1, São Paulo: Editora Harbra Ltda, 1994
- [4] SIMMONS, George F. **Cálculo com geometria analítica**. v. 1, São Paulo: Pearson Makron Books, 1987.
- [5] WINTERLE, Paulo. Vetores e geometria analítica. São Paulo: Pearson Makron Books, 2000.