

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Centro Tecnológico, de Ciências Exatas e Educação Departamento de Matemática

Plano de Ensino

Identificação da disciplina

Código da Nome da disciplina		Créditos semanais		Carga horária semestral	PCC
disciplina	Trome da discipinia	Teóricos	Práticos	Carga noraria scinestrai	100
MAT2211	Álgebra Linear	04	-	72 h/a	-

Pré-Requisitos

Nome e código da disciplina	-

Identificação da oferta

Changes	Turmo	Analaamaatua
Cursos	Turma	Ano/semestre
Engenharia de Materiais	753	2025.1
Engenharia de Controle e Automação	754	2025.1

Professor ministrante	E-mail	
Cleison dos Santos Ramthun	cleison.ramthun@ufsc.br	

Objetivos da disciplina

• Fornecer uma base teórico-prática sólida na teoria dos espaços vetoriais e dos operadores lineares, de maneira a possibilitar sua aplicação nas diversas áreas da ciência e da tecnologia

Ementa

Espaço vetorial. Transformações lineares. Mudança de base. Produto interno. Transformações ortogonais. Autovalores e autovetores de um operador. Diagonalização.

Conteúdo programático

1. Espaços Vetoriais

- Espaço vetorial real: definição
- Unicidade do vetor nulo, do vetor simétrico e outras propriedades
- Subespaços vetoriais: definição
- Interseção e soma de subespaços
- Combinação linear
- Subespaço gerado por um conjunto de vetores
- Base e dimensão de um espaço vetorial
- Vetores linearmente independentes e vetores linearmente dependentes: definição e propriedades
- Definição de base e dimensão de um espaço vetorial
- Propriedades: dimensão da soma de subespaços e outras que envolvam base e dimensão
- Definição de coordenadas de um vetor e de matriz coordenada. Mudança de coordenadas

2. Transformações Lineares

- Transformação linear: definição
- Teoremas

- Núcleo e imagem de uma transformação linear
- Definição de núcleo
- Definição de imagem
- Núcleo e imagem como subespaços vetoriais
- Geradores da imagem de uma transformação linear
- Transformações lineares injetoras e sobrejetoras: definição
- Isomorfismo: definição
- Teoremas
- Transformações lineares e matrizes
- Matrizes associadas a uma transformação linear
- Composição de transformações lineares
- Determinação de transformação linear inversa através da forma matricial
- Matriz mudança de base

3. Produto Interno

- Definição de produto interno
- Vetores ortogonais: definição e propriedades
- Definição de base ortogonal
- Norma de um vetor Definição e propriedades
- Ângulo entre vetores: definição
- Base ortonormal: definição
- Processo de ortogonalização de Gram-Schmidt
- Componentes de um vetor numa base ortogonal
- Complemento ortogonal: definição e propriedades

4. Autovalores e autovetores

- Definição de autovalores e autovetores
- Autovalores e autovetores de uma matriz
- Polinômio característico
- Diagonalização de operadores lineares
- Teoremas

5. Tipos especiais de Operadores Lineares

- Matriz simétrica e matriz ortogonal
- Teoremas
- Operadores autoadjuntos e ortogonais: definição e teoremas
- Diagonalização de operadores autoadjuntos

Metodologia

Procedimentos: Aulas expositivas e dialogadas. Listas de exercícios. Aulas de resolução de exercícios.

Horário semanal de atendimento aos estudantes.

Recursos: Régua, canetas, apagador e quadro branco.

Listas e recados serão disponibilizados no Moodle da disciplina.

Critérios de Avaliação

Durante o semestre, serão aplicadas três provas escritas em uma escala de 0 a 10,0: P1, P2 e P3. A média M será obtida pela média aritmética das três avaliações, no caso,

$$M = (P1 + P2 + P3) / 3.$$

Se M for maior ou igual a 6,0, o estudante estará aprovado e M será a sua média semestral.

_Se M for maior ou igual a 3,0 e menor ou igual a 5,5, o estudante não estará aprovado, mas, terá direito a fazer uma prova de recuperação versando sobre todos os assuntos abordados na disciplina.

Se M for menor do que 3,0, esta será a média semestral e o estudante será considerado reprovado.

_Em todas as situações, a aprovação do estudante estará condicionada à presença em pelo menos 75% das aulas. Estudantes com presença inferior a 75% serão reprovados e sua nota semestral será 0,0.

Recuperação

O estudante com frequência suficiente e média M entre 3,0 e 5,5 terá direito a uma prova de recuperação R, abordando todo o conteúdo programático. A média final da disciplina será a média aritmética entre M e R, ou seja,

$$MF = (M + R) / 2.$$

O estudante estará aprovado se MF for maior ou igual a 6,0.

Cronograma

Parte I – de 31/03/2025 a 12/05/2025:

- 1. Espaços Vetoriais
- 2. Transformações Lineares (Parte 1)

Parte II – de 14/05/2025 a 30/06/2025:

- 2. Transformações Lineares (Parte 2)
- 3. Produto Interno

Parte III – de 02/07/2025 a 23/07/2025:

- 4. Autovalores e autovetores
- 5. Tipos especiais de Operadores Lineares

_ Datas importantes:

12/05/2025 – **Prova I**.

30/06/2025 - **Prova II**.

23/07/2025 -Prova III.

28/07/2025 – Provas de segunda chamada.

30/07/2025 – Prova de Recuperação.

- **Obs. 1:** Datas das provas sujeitas à alteração.
- **Obs. 2:** O estudante que não realizar alguma avaliação, terá 3 dias úteis após o encerramento desta para justificar seus motivos e ter direito a uma segunda chamada, conforme o Art. 74 da Resolução no 017/CUn/97.
- **Obs. 3:** A carga horária da disciplina será cumprida em 18 semanas.

Bibliografia

Básica

- [1] ANTON, Howard; RORRES, Chris. Álgebra linear: com aplicações. Porto Alegre: Bookman, 2012.
- [2] BOLDRINI, José L. Álgebra linear. São Paulo: Harbra, 1986.
- [3] STEINBRUCH, Alfredo; WINTERLE, Paulo. Álgebra linear. 2. ed., Sao Paulo: Pearson Makron Books, 1987.

Complementar

- [1] CALLIOLI, Carlos A.; COSTA, Roberto C. F.; DOMINGUES, Hygino H. Álgebra linear e aplicações. São Paulo: Atual, 1990.
- [2] KOLMAN, Bernard; HILL, David R. **Introdução à álgebra linear com aplicações.** Rio de Janeiro: LTC, 2006.
- [3] LAY, David C.; LAY, Steven R.; MCDONALD, Judith. Álgebra linear e suas aplicações. Rio de Janeiro: LTC, 2018.
- [4] STRANG, Gilbert. **Álgebra linear e suas aplicações.** São Paulo: Cengage Learning, 2010. [5] STRANG, Gilbert. **Introdução à álgebra linear.** Rio de Janeiro: LTC, 2013.