

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Centro Tecnológico, de Ciências Exatas e Educação Departamento de Matemática

Plano de Ensino

Identificação da disciplina

Código da	Nome da disciplina	Créditos semanais		Carga horária semestral	PCC
disciplina		Teóricos	Práticos	Carga noraria semestrar	TCC
MAT1701	Análise na Reta I	04	_	72 h/a	-

Pré-Requisitos

Name a sédica da dissimilar	MAT1121 – Fundamentos da Matemática	
Nome e código da disciplina	MAT1401 – Cálculo II	

Identificação da oferta:

Cursos	Turma	Ano/semestre
Licenciatura em Matemática (noturno)	07751	2025.2

Professor ministrante	E-mail
Eleomar Cardoso Júnior	eleomar.junior@ufsc.br

Objetivos da disciplina

Ao término do curso, o estudante deverá estar familiarizado com conceitos que permitirão:

- Ter uma visão global das propriedades dos números. Aplicar técnicas e resultados de limite na resolução de problemas.
- Aplicar técnicas e resultados de sequências e séries de números reais na resolução de problemas.

Ementa

Conjuntos finitos e infinitos. Números Reais. Sequências e séries de números reais. Noções de topologia da reta. Limite e continuidade de funções.

Conteúdo programático

1. Funções.

- Funções: domínio, contradomínio, imagem e imagem inversa.
- Composição de funções.

2. Conjuntos finitos e infinitos. Números Reais.

- Os axiomas de Peano e o conjunto dos números naturais.
- Conjuntos finitos, enumeráveis e não enumeráveis. Propriedades.
- O conjunto dos números reais como um corpo ordenado completo. Supremo e ínfimo. Propriedades.

3. Sequências e séries de números reais.

- Limite de sequências numéricas.
- Subsequências.
- Sequências monótonas.
- Sequência limitada. Teorema de Bolzano-Weierstrass.
- Sequência de Cauchy.
- Convergência e divergência de séries numéricas.
- Série absolutamente convergente.
- Critérios de convergência e divergência de séries.

4. Noções de topologia da reta.

- Conjuntos abertos e fechados. Interior e fecho. Propriedades.
- Pontos de acumulação.
- Conjuntos compactos. Propriedades.

5. Limite e continuidade de funções.

- Definição de limite. Propriedades.
- Limites laterais.
- Limites no infinito e limites infinitos.
- Expressões indeterminadas.
- Funções contínuas. Propriedades.
- Teorema do valor intermediário e de Weierstrass. Aplicações.
- Continuidade uniforme.

Metodologia

Procedimentos: Aulas expositivas e dialogadas. Listas de exercícios. Aulas de resolução de exercícios. Horário semanal de atendimento aos estudantes.

Recursos: Régua, canetas, apagador e quadro branco.

Listas e recados serão disponibilizados no Moodle da disciplina.

Critérios de Avaliação

Ao longo do semestre, serão aplicadas três avaliações escritas ponderadas em uma escala de 0 a 10,0: P1, P2 e P3.

A média M será obtida pela média aritmética das três avaliações, ou seja,

$$M = (P1 + P2 + P3)/3.$$

Se M for maior ou igual a 6,0, o estudante estará aprovado e M será a sua média semestral.

- _ Se M for maior ou igual a 3,0 e menor ou igual a 5,5, o estudante não estará aprovado, mas, terá direito a fazer uma prova de recuperação versando sobre todos os assuntos abordados na disciplina.
- _ Se M for menor do que 3,0, esta será a média semestral e o estudante será considerado reprovado.
- _ Em todas as situações, a aprovação do estudante estará condicionada à presença em pelo menos 75% das aulas. Estudantes com presença inferior a 75% serão reprovados e sua nota semestral será 0,0.

Recuperação

O estudante com frequência suficiente e média M entre 3,0 e 5,5 terá direito a uma prova de recuperação R, abordando todo o conteúdo programático. A média final da disciplina será a média aritmética entre M e R, i.e.,

$$MF = (M + R) / 2.$$

O estudante estará aprovado se MF for maior ou igual a 6,0.

O formato da prova de recuperação será uma prova escrita, a ser disponibilizada na plataforma Moodle.

Cronograma

Apresentação dos Conteúdos:

Semana 1: 1. Funções.

Semanas 2, 3, 4 e 5: 2. Conjuntos finitos e infinitos. Números Reais.

Semanas 6, 7, 8 e 9: 3. Sequências e Séries de Números Reais.

Semanas 10, 11, 12 e 13: 4. Noções de Topologia da Reta.

Semanas 14, 15, 16 e 17: 5. Limite e Continuidade de Funções.

Avaliações:

P1 – Avaliação 1: na 5^a semana.

P2 – Avaliação 2: na 11^a semana.

P3 – Avaliação 3: na 17^a semana.

REC – **Recuperação e Provas de 2ª chamada:** na 18ª semana.

Bibliografia

Principal

- 1] ÁVILA, Geraldo. **Análise matemática para Licenciatura**. 2.ed. São Paulo: Edgard Blucher, 1999.
- [2] LIMA, Elon Lages. Análise real: funções de uma variável. 12. ed. Rio de Janeiro: IMPA, 2013.
- [3] LIMA, Elon Lages. Curso de Análise. v. 1, 13. ed. Rio de Janeiro: IMPA, 2010.

Complementar

- [1] ÁVILA, Geraldo. Introdução à análise matemática. 2.ed. São Paulo: Edgard Blucher, 1999.
- [2] FIGUEIREDO, Djairo G. Análise I. 2 ed. Rio de Janeiro: LTC, 1996.
- [3] GUIDORIZZI, Hamilton L. Um curso de cálculo. Rio de Janeiro: LTC, 2005.
- [4] LIMA, Elon Lages. Espaços Métricos. Rio de Janeiro: IMPA, 2003.
- [5] MUNIZ NETO, Antonio Caminha. **Tópicos de Matemática Elementar** Volume 3: Introdução à Análise. 2 ed., Rio de Janeiro: SBM, 2013.