

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Centro Tecnológico, de Ciências Exatas e Educação Departamento de Matemática

Plano de Ensino

Identificação da Disciplina

racitanteação da Biscipinta					
	Carga		orária sem	anal (h/a)	
Código	Nome	Teórica	PCC	Extensão	Carga horária total (h/a)
MAT4301	Cálculo I	3	1		72 (18 h/a PCC)

Pré Requisitos

Nome e código da disciplina	MAT4201 – Introdução ao Cálculo	
i some e coarge aa arcerpinia		

Identificação da oferta

Cursos	Turma	Ano/Semestre	Horário/Sala
751 – MATEMÁTICA Licenciatura (noturno)	03751	2025.2	3.1830-2/A103 e 5.2020-2/A105

Professor

Professor	E-mail
Darlyn Vargas	darlyn.vargas@ufsc.br

Objetivos da disciplina

- Identificar, resolver e aplicar as propriedades de limite
- Lidar algebricamente com limites indeterminados
- Identificar funções contínuas e aplicar as propriedades de funções contínuas
- Aplicar o Teorema do Valor Intermediário
- Interpretar geometricamente a derivada de uma função
- Utilizar as regras de derivação de funções elementares
- Identificar a regra da cadeia e obter a derivada de funções compostas
- Aplicar o conceito de derivada para solucionar problemas relacionados à taxa de variação, velocidade e aceleração
- Aplicar teoremas sobre máximos e mínimos para resolver problemas de otimização e esboçar gráficos de funções
- Utilizar a regra de L'Hospital para solucionar limites indeterminados
- Aplicar o Teorema de Taylor

Ementa

Limites e continuidade de funções. Extensão do conceito de limite: limites no infinito; limites infinitos, sequências e limite de sequência, limites de função e sequência. O conceito de derivada. Regras de derivação. Aplicações de derivadas: classificação de pontos críticos. Teorema do valor médio, problemas de máximos e mínimos. Formas indeterminadas e a Regra de L'Hôspital. Esboço de gráficos de funções. Polinômio de Taylor e aproximações de funções.

Conteúdo programático

1. Limites e Continuidade

- Limites: definição e propriedades
- Limites laterais
- Limites no infinito e limites infinitos. Assíntotas horizontais e verticais
- Sequência e limite de sequência. Relações entre limite de função e sequências
- Indeterminações
- Limites fundamentais
- Continuidade: definição e propriedades
- Teorema do Valor Intermediário e de Weierstrass

2. Derivada

- Definição. Interpretação geométrica
- · Derivadas laterais
- Regras de derivação: derivada de função composta (regra da cadeia). Derivada da função inversa. Derivada de funções elementares. Derivada de $g(x)^{f(x)}$. Derivadas de ordem superior. Derivação implícita

3. Aplicações de Derivadas

- Taxa de variação, velocidade e aceleração
- Teorema do Valor Médio
- Análise do comportamento de funções: extremos de uma função, funções crescentes e decrescentes.
 Critérios para determinar os extremos de uma função. Concavidade e ponto de inflexão. Esboço de gráficos
- Problemas de otimização
- Regra de L'Hôspital

4. Fórmulas de Taylor

- Polinômio de Taylor de ordem n
- Aproximação local de função diferenciável usando polinômios de Taylor

Cronograma de atividades

Semana	Conteúdos/Atividades
1	Limites: definição e propriedades - Limites laterais
2	Limites no infinito e limites infinitos. Assíntotas horizontais e verticais
3	Sequência e limite de sequência. Relações entre limite de função e sequências
4	Indeterminações - Limites fundamentais
5	Continuidade: definição e propriedades
6	Teorema do Valor Intermediário e de Weierstrass
7	Derivada: definição e interpretação geométrica - Derivadas laterais - Primeira Prova Escrita
8	Regras de derivação: derivada de função composta (regra da cadeia)
9	Derivada da função inversa
10	Derivada de funções elementares - Derivada de $g(x)^{f(x)}$ - Derivadas de ordem superior
11	Derivação implícita
12	Taxa de variação, velocidade e aceleração - Teorema do Valor Médio
13	Análise do comportamento de funções: extremos de uma função, funções crescentes e decrescentes. Critérios para determinar os extremos de uma função. Concavidade e ponto de inflexão. Esboço de gráficos - Segunda Prova Escrita

14	Problemas de otimização
15	Regra de L'Hôpital
16	Polinômio de Taylor de ordem n
17	Aproximação local de função diferenciável usando polinômios de Taylor - Terceira Prova Escrita
18	Prova de Recuperação

Metodologia

Procedimentos: Aulas expositivas e dialogadas. Exercícios em sala e extra sala. Provas escritas de avaliação conceitual.

Recursos: Caneta e quadro branco. Plataforma Moodle (moodle.ufsc.br): listas de exercícios e material complementar.

PCC - Prática como Componente Curricular

A prática como componente curricular possibilita ao estudante a reflexão sobre como se aprendem e ensinam os conteúdos de Cálculo I. Nesse sentido organizaremos experimentos didáticos a partir do software GeoGebra que motivem discussões sobre aspectos dos conteúdos de Cálculo I a serem ensinados no ensino fundamental e médio. Preparação de uma sequência didática destinada as esses níveis de ensino.

Avaliação

Se dará por meio de, três listas de exercícios, três provas escritas e um trabalho experimental com GeoGebra

- Cada lista terá pontoação de 0 a 10, esta deverá ser resolvida e entregue ao professor.
- Cada prova terá uma pontoação de 0 a 10 que será aplicada de forma presencial e terá uma duração de duas horas.
- O trabalho experimental com GeoGebra terá pontoação de 0 a 10, e a redação deverá conter tanto a explicação construtiva quanto o hyperlink da simulação.

Critérios de pontoação das avaliações:

- Três avaliações: P_i (i=1,2,3) com peso 2.
- Três listas: L_i (i=1,2,3) com peso 1.
- Um trabalho experimental: T_e com peso 3.

A média M será calculada na forma: $M = [(2*P_1+L_1)+(2*P_2+L_2)+(2*P_3+L_3)+3*T_e]/12$

Se a frequência for suficiente (>75%):

- O aluno estará aprovado se M for maior ou igual a 6,0
- O aluno estará reprovado se M for menor que 3,0
- Se M estiver entre 3,0 e 5,5, o aluno terá direito a uma prova de recuperação, se a frequência suficiente.

A prova de recuperação renderá uma nota R e a Média Final do estudante será:

$$MF = (M + R)/2.$$

Finalmente, o aluno estará aprovado se MF for maior ou igual a 6,0.

Bibliografia

Básica

- [1] ANTON, Howard; BIVENS, Irl; DAVIS, Stephen. Cálculo. 10. ed., Porto Alegre: Bookman, 2014.
- [2] GUIDORIZZI, Hamilton L. Um curso de cálculo. 5. ed., v. 1, Rio de Janeiro: LTC, 2001.
- [3] STEWART, James. Cálculo. 7.ed., v. 1, São Paulo: Cengage Learning, c2014.

Complementar

- [1] ÁVILA, Geraldo. Cálculo. 7. ed., Rio de Janeiro: LTC, 2006.
- [2] BOULOS, Paulo; ABUD, Zara I. Cálculo diferencial e integral. v. 1, São Paulo: Makron Books, 1999.
- [3] FLEMMING, Diva Marília; GONÇALVES, Mirian Buss. **Cálculo A**: funções, limite, derivação e integração. 6. ed. rev. e ampl., São Paulo: Pearson Prentice Hall, c2007.
- [4] IEZZI, Gelson; MURAKAMI, Carlos; MACHADO, Nilson José **Fundamentos de matemática elementar**: limites, derivadas, noções de integral. 7. ed., v. 8, São Paulo: Atual, 201
- [5] LIMA, Elon L. Análise real. 10. ed., Rio de Janeiro: Instituto de Matemática Pura e Aplicada, 2009.
- [6] SIMMONS, G. F. Cálculo com geometria analítica. São Paulo: Pearson Makron Books, c1987-c1988.