UNIVERSIDADE FEDERAL DE SANTA CATARINA

Centro Tecnológico, de Ciências Exatas e Educação Departamento de Matemática

Plano de Ensino

Identificação da Disciplina

Código	Nome da disciplina	Carga horária semanal	Prática PCC (h/a)	Carga horária total
		(h/a)		(h/a)
MAT4441	Geometria Analítica	4	2	108

Pré-requisitos

Código	Nome da disciplina
_	_

Identificação da Oferta

Turmas	Ano-Semestre	Curso
04756	2025-2	756 - Licenciatura em Matemática

Ministrantes

Professores	email
Renan Gambale Romano	r.g.romano@ufsc.br

Objetivos gerais da disciplina

- Identificar geometricamente equações lineares e quadráticas em até 3 variáveis e representá-las graficamente;
- Operar com vetores, calcular os produtos escalar, vetorial e misto, bem como utilizar suas interpretações geométricas;
- Aplicar as noções de vetores para resolver problemas com retas e planos;
- Resolver algebricamente e interpretar geometricamente o conjunto solução de um sistema linear de até 3 variáveis.

Ementa

Álgebra matricial. Sistemas de equações lineares. Determinantes. Vetores e geometria no espaço. Retas e planos. Seções cônicas: parábola, elipse, hipérbole. Superfícies quádricas e curvas no espaço.

Conteúdo Programático

- 1. Álgebra Matricial.
 - 1.1 Adição, multiplicação por escalar, matriz nula e matriz inversa;
 - 1.2 Produto de matrizes, matriz transposta, matriz simétrica;
 - 1.3 Determinante de uma matriz.
- 2. Sistemas de equações lineares.
 - 2.1 Escalonamento de matrizes;
 - 2.2 Solução de sistemas lineares de 2 ou 3 variáveis.
- 3. Vetores no plano e no espaço.
 - 3.1 Segmentos orientados;
 - 3.2 Definição e operações com vetores;
 - 3.3 Dependência linear;
 - 3.4 Bases e coordenadas de um vetor em relação a uma base;
 - 3.5 Norma de vetor;
 - 3.6 Produto escalar;
 - 3.7 Ângulo entre vetores;
 - 3.8 Orientação no espaço;
 - 3.9 Produto vetorial;
 - 3.10 Produto misto:
- 4. Retas e planos no espaço.
 - 4.1 Equações da reta;
 - 4.2 Ângulo entre retas;
 - 4.3 Equações do plano;
 - 4.4 Ângulo entre dois planos;
 - 4.5 Distância de ponto a reta;
 - 4.6 Distância de ponto a plano;
 - 4.7 Distância entre duas retas reversas;
 - 4.8 Distância entre dois planos;
 - 4.9 Interpretação geométrica de sistemas de equações lineares;
- 5. Curvas quadráticas Cônicas.
 - 5.1 Definição e dedução da equação de elipse, parábola e hipérbole;
 - 5.2 Estudo de propriedades de cônicas.
- 6. Superfícies quadráticas no espaço.
 - 6.1 Definição de superfícies quádricas;
 - 6.2 Esfera, elipsoide, hiperboloides (de uma ou duas folhas), paraboloides (elíptico ou hiperbólico), cilindros
- e cones;
 - 6.3 Seções cônicas.

Metodologia

- Aulas expositivas e dialogadas.
- Resolução de exercícios em sala e listas de exercícios disponibilizadas no Moodle.

Frequência

- A frequência será aferida durante a aula.
- O aluno terá frequência suficiente quando tiver 75% ou mais de presença em sala.

Prática como Componente Curricular

- A atividade de PCC consistirá na elaboração e execução, em grupo, de um plano de ensino.
- Os alunos deverão elaborar um plano de ensino contendo parte do conteúdo da disciplina para o ensino médio e executar esse plano de ensino em formato de aula para os alunos da turma. A PCC será avaliada tanto com relação ao plano de ensino quanto à apresentação dos alunos e a participação na elaboração da atividade. O uso de materiais didádicos diferenciais também será levada em consideração na atribuição da nota PCC.
- A apresentação das aulas serão feitas nas três ultimas semanas de aula, de acordo com o cronograma abaixo, ou em horário fora da disciplina, desde que em comum acordo com os alunos.

Avaliação

- Serão realizadas três atividades avaliativas, P1, P2 e P3.
- As avaliações P1, P2 e P3 ocorrerão na ultima semana de cada período respectivo (ver cronograma) de maneira presencial. As datas das avaliações serão combinadas com os alunos.
- A Prática como Componente Curricular (PCC) terá sua data combinada com os alunos durante a disciplina.
- A média M será dada pela fórmula

$$M = \frac{P1 + P2 + P3 + PCC}{4} \tag{1}$$

- e o critério para aprovação automática será $M \geq 6$ se a frequência for suficiente. Reprovação automática ocorrerá se a frequência for insuficiente (FI) ou M < 3.
- Caso $3 \le M < 6$, o aluno com frequência suficiente terá direito a uma prova de recuperação REC e a nova média final MF será dada por:

$$MF = \frac{M + REC}{2} \tag{2}$$

Neste caso, a aprovação ocorre se, e somente se, a frequência for suficiente e $MF \ge 6$.

- Caso o aluno falte em alguma prova, poderá solicitar a segunda chamada caso faça o pedido em até 3 dias úteis após o encerramento da mesma, de acordo com o Art. 14 da Resolução 017/CUn/97.

Cronograma

Período	Conteúdo	Avaliações
Semanas: 1 - 5	Tópicos 1 e 2	Prova P1
Semanas: 6 - 10	Tópicos 3 e 4	Prova P2
Semanas: 11 - 15	Tópicos 5 e 6	Prova P3
Semanas: 16 - 17	Apresentações da PCC	PCC
Semana 18	Semana de Recuperação	Prova REC

Bibliografia Básica

- [1] ANTON, Howard; RORRES, Chris. Álgebra linear com aplicações. 10. ed., Porto Alegre: Bookman Editora, 2000.
- [2] STEINBRUCH, Alfredo; WINTERLE, Paulo. Álgebra linear. São Paulo: Pearson Makron Books, 1987.
- [3] STEINBRUCH, A.; WINTERLE, P. Geometria analítica. 2. ed., São Paulo: Pearson Makron Books, 1987.

Bibliografia Complementar

- [1] BOLDRINI José Luiz, et al. Álgebra linear. 3. ed., São Paulo: Editora Harbra, 1984.
- [2] BOULOS, Paulo; CAMARGO Ivan de. Geometria analítica. 3 ed., São Paulo: Prentice Hall, 1987.
- [3] CALLIOLI, Carlos A,et al. Álgebra linear e aplicações. São Paulo: Ed. Atual. 1990.
- [4] LIMA Elon Lages. Coordenadas no plano. 6. ed., Rio de Janeiro: SBM, 2013.
- [5] SANTOS, Nathan Moreira dos. Vetores e matrizes. 3. ed. São Paulo: Thomson Learning, 2007.