

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Centro Tecnológico, de Ciências Exatas e Educação Departamento de Matemática

Plano de Ensino

Identificação da disciplina

Tuchtificação da disciplina								
Código da disciplina	Nome da disciplina	Créditos semanais		Carga horária semestral	PCC (h/a)			
		Teóricos	Práticos	Carga noraria semestrar				
MAT4541	Álgebra Linear I	03	00	72	01			

Pré-Requisitos

Nome e código da disciplina	Geometria Analítica – MAT4441

Identificação da oferta

Curso	Turma	Ano/semestre
Licenciatura em Matemática (noturno)	05751	2025 - 2

Professores ministrantes	E-mail	
Bruno Tadeu Costa	b.t.costa@ufsc.br	

Objetivos da disciplina

- Entender o conceito de fatoração LU e suas aplicações;
- Resolver sistemas lineares usando fatoração de matrizes;
- Compreender os conceitos de espaço vetorial, dimensão e base;
- Relacionar transformações lineares com matrizes;
- Reconhecer, organizar ser capaz de fazer demonstrações de resultados importantes de Álgebra Linear.

Ementa

Fatoração PA=LU. Espaços vetoriais. Transformações lineares.

Conteúdo programático

1. Fatoração PA=LU:

- Processo de triangulação de matrizes.
- Posto e nulidade de matrizes.
- Tipos de soluções de sistemas lineares.
- Pivotamento.
- Resolução de sistemas lineares utilizando a fatoração LU.

2. Espaços Vetoriais:

- Definição e exemplos.
- Subespaços vetoriais.
- Combinação linear.
- Dependência e independência linear.
- Base e dimensão.
- Subespaços fundamentais associados a uma matriz: espaço-coluna, espaço-linha, espaço-nulo das colunas e espaço-nulo das linhas.
- Soma direta.

3. Transformações Lineares:

- Definição e propriedades básicas.
- Teorema do núcleo e da imagem.
- Matrizes e transformações lineares.
- Operadores lineares.
- Isomorfismos.

Metodologia

Procedimentos: Aulas expositivas e dialogadas. Listas de exercícios. Aulas de dúvidas. Recursos: Régua, compasso, caneta e quadro branco. Plataforma *Moodle* (moodle.ufsc.br).

Prática como Componente Curricular (PCC)

Assim que terminado o conteúdo especificado na ementa do curso, os alunos deverão analisar livros didáticos relativos ao conteúdo e entregar um relatório com sua avaliação.

Avaliação

Serão realizadas três provas escritas: P1, P2 e P3. A nota final M da disciplina será calculada como segue:

$$M = \frac{P1 + P2 + P3}{3}$$

Será considerado aprovado o aluno que tiver, além de frequência suficiente, média maior ou igual a 6,0.

Recuperação

O aluno com frequência suficiente, e com média das avaliações entre 3,0 e 5,5, terá direito a uma nova avaliação, no final do semestre, abordando todo o conteúdo programático. A nota final desse aluno será calculada através da média aritmética entre a média das avaliações anteriores e a nota da nova avaliação. Será considerado aprovado o aluno que tiver a nota final maior ou igual a 6,0.

Cronograma

- Agosto e Setembro Item 1 (Prova 1: 17/09/2025);
- Setembro e Outubro Item 2 (Prova 2: 29/10/2025);
- Novembro e Dezembro Item 3 (Prova 3: 03/12/2025);
- Dezembro -PCC e Recuperação.

Bibliografia

Básica

- [1] ANTON, Howard; RORRES, Chris. Álgebra linear: com aplicações. 10. ed. Porto Alegre: Bookman, 2012.
- [2] BOLDRINI, José Luiz, et al. Álgebra linear. 3.ed. São Paulo: Harbra, 1986.
- [3] STEINBRUCH, Alfredo; WINTERLE, Paulo. Álgebra linear. 2. ed. São Paulo: Pearson Makron Books, 1987.
- [4] STRANG, Gilbert. Introdução à álgebra linear. 4. ed. Rio de Janeiro: LTC, 2013.

Complementar

- [1] CALLIOLI, C. A .et al., Álgebra Linear e Aplicações, Ed. Atual, São Paulo, 1990.
- [2] KOLMAN, Bernard; HILL, David R. Introdução à álgebra linear com aplicações. 8. ed. Rio deJaneiro: LTC, 2006.
- [3] LEON, Steven J. Álgebra linear com aplicações. 8. ed. Rio de Janeiro: LTC, 2011.
- [4] LIMA, Elon Lages. Álgebra Linear. 9a edição. Rio de Janeiro, RJ: IMPA, 2016.
- [5] SHIFRIN, Theodore; ADAMS, Malcolm Ritchie. Álgebra linear: uma abordagem geométrica. 2. ed. Rio de Janeiro: LTC, 2013.